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A systematic procedure for the derivation of crystal structures is outlined and executed for ABXI 
compounds, in which both cations A and B have an octahedral environment. The selection of the 
structures is based on the qualitative model of ionic bonding, including polarizability, and on the 
application of Pauling’s second and fifth rules. The resulting structures are compared with each other 
and with the realized structures. 

Introduction 

The systematic derivation of structures for 
ABX, compounds with both A and B octa- 
hedrally coordinated is part of a broad in- 
vestigation of ABX, structures, the purpose 
of which is to advance our understanding of 
structures and structural relations. 

This investigation is accompanied by experi- 
mental efforts in order to enlarge the number 
of data with which the obtained structures and 
thus the validity of the applied selection criteria 
can be tested. The experimental investigation 
concerns ABX3 halides, A representing an 
alkali and B a divalent transition or alkaline 
earth metal. The halides with perovskite-like 
structures have been derived and investigated 
in our laboratory by Brandwijk and Schippers 
(I, 2). We have chosen the smaller alkali 
metals lithium and sodium in the case that X 
represents chlorine. This experimental in- 
vestigation has led to a single crystal structure 
determination of NaMnCl, (3). This com- 
pound as well as NaCdCl, is isostructural 
with FeTiO, (ilmenite) (4). 

The structure derivation of ABXJ com- 
pounds has been based on the qualitative 
model of ionic bonding, including polariz- 
ability, as outlined and used by Gorter (5) 
in order to explain and predict crystal struc- 
tures. This paper deals with structures in 
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which the cations have a coordination number 
of six. The most isonomous six coordination, 
the octahedron, is to be preferred. Following 
Brandwijk and Schippers (I) we place the 
anions on a lattice that is composed of two- 
dimensional triangular nets (Fig. la). Diff- 
erent stacking of the triangular nets leads to 
different lattices. If the lattice points are 
occupied by contacting spheres of equal 
size the packing density of a lattice can be 
defined as the percentage occupied volume. 
The greatest packing density is obtained by 
the so-called close-packed lattices, comprising 
the c (cubic close-packed), the h (hexagonal 
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FIG. la. Triangular net; the first unit cell of Table I 
is drawn. 
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FIG. 1 b. Honeycomb pattern. 

close-packed), and mixed c-h stackings. 
Examples of less compact lattices are the 
simple hexagonal stacking and the MoSi,- 
lattice (6). It is the stacking type of the close- 
packed lattices that provides the lattice with 
octahedral interstices. The octahedral inter- 
stices between a pair of two-dimensional 
triangular nets constitute a triangular net 
themselves, their number equaling that of the 
lattice points in one of the sandwiching nets. 
If the anions are placed on one of the close- 
packed lattices only two octahedral inter- 
stices per three anions are to be occupied by 
cations to obtain the correct stoichiometry. 
The anions can also be placed on a lattice, in 
which the stacking type of the close-packed 
lattices is combined with a different stacking 
type. In the latter case one should see to it 
that a sufficient number of the former stacking 
type is present in view of the required number 
of octahedral interstices. The selection of 
structures is governed by Pauling’s second 
and fifth rules (7). In his second rule, Pauling 
stated that the charge of the anions has to be 
compensated by the sum of the charges of the 
nearest cation neighbours, divided by their 
respective coordination numbers. Pauling 
has formulated his fifth rule as follows: 
The number of essentially different kinds of 
constituents in a crystal tends to be small. 
At the start of a structure derivation one tries 
to obtain the best structures according to 
certain selection criteria. Therefore, we have 
applied the fifth rule, generally known as the 
rule of parsimony, in a very restrictive manner: 
the same ions are to have the same coordina- 
tion as regards number and polyhedron shape 

if this can be achieved for the given stoichio- 
metry. The fulfillment of this condition entails 
that the second rule, commonly named the 
rule of charge compensation, is fulfilled. Let 
us consider for example an A2+B4+X3 com- 
pound: a structure consisting of anions sur- 
rounded by three B-ions, and anions surround- 
ed by IB + 4A ions, is allowed as regards the 
rule of charge compensation, but our applica- 
tion of the rule of parsimony prohibits such a 
structure. So each anion has to be surrounded 
by four cations. Consequently, the anions 
can only be placed on a close-packed lattice. 
An alternative lattice, viz a combination of 
the stacking type of close-packed lattices 
with a different stacking type, always involves 
three-coordinated anions (or even less). 

Since only two of three octahedral inter- 
stices in a close-packed anion lattice are to 
be occupied by cations for reasons of stoichio- 
metry this investigation is subdivided in two 
parts. In the first part the distribution of 
cations and vacancies over the octahedral 
interstices is studied, while in the second the 
types of order of A and B ions over the occu- 
pied sites are considered. 

Derivation of “‘M,X, Structures 

The main problem is how the derivation 
can be done systematically and thus as com- 
plete as possible. The anion lattices under 
consideration have in common that the octa- 
hedral interstices constitute triangular nets. 
Therefore, we decided to introduce systematics 
by the application of two-dimensional unit 
cells in the triangular nets. In order to delimit 
the field of investigation the volume of the 
two-dimensional unit cells is not allowed to 
exceed an arbitrarily chosen limit of eighteen 
lattice points. 

In close-packed lattices only two space- 
filling polyhedra (SFP) (5) can occur. The 
surrounding of the anion by cations can be 
visualized in these SFP’s by occupying four 
octahedral sites with cations (Fig. 2). Two 
types of order are possible for the SFP of a 
cubic close-packed lattice and three for the 
SFP of a hexagonal close-packed lattice. 
In Fig. 2 a nomenclature for the anion 
polyhedra is introduced. Since the anion poly- 
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FIG. 2. Space-filling polyhedra for “‘M2X3. 

hedra will be referred to throughout, a small 
explanation of the code words is given. The 
first symbol is C or H to indicate whether the 
anion polyhedron is derived from the SFP of 
a ccp or a hcp lattice. The second symbol 
specifies on which sites the vacancies are 
created: 0 (ortho), P (para), and M (meta) 
stand for sites with the shortest, the largest and 
the intermediate distance, respectively. In 
our ionic model the anion polyhedra CP and 
HO are excluded on the grounds of simple 
electrostatic considerations. Directing the 
attention to an anion layer, sandwiched by 
two triangular nets of octahedral interstices, 
one can see that each octahedral site belongs 
to three anions of this layer. Each anion re- 
quires four cation neighbours, together 
counting for 4 cations. If the anion layer 
houses p anions the surrounding cation layers 
together necessarily contain $ x p cations. In 
other words, if the composition* of a layer 
is y/3 cations + (3 - y)/3 vacancies (1 < y < 3) 
the composition of the adjacent cation layers 
has to be (4 - y)/3 cations + (y - 1)/3 vacan- 
cies and so on. Since the number of cations 
in two adjacent cation layers ($ x p) has to 
be an integer the value of p is restricted to 

* The composition of a layer is defined as the re- 
spective numbers of cations and vacancies in the 
cation layer divided by the number of anions in the 
anion layer. 

TABLE I 

TWO-DIMENSIONAL UNIT CELLS 

Translation No. of 
periods (no) Angle (deg.) lattice points 

2V3 2V3 120 12 
4 VI 100.90 12 
2 2V7 100.90 12 
6 v3 90 12 
3 v13 106.10 12 
2 3v3 90 12 
3 2V3 90 12 
1 6V3 90 12 
1 13 92.20 15 
3 v19 96.58 15 
3 v21 109.10 15 
5 v7 100.90 15 
v13 v13 93.58 15 

1 9v3 90 18 
2 V61 93.61 18 
3 3v3 90 18 
3 2Vl 100.90 18 
6 VI 100.90 18 
v13 v19 97.32 18 

9 v3 90 18 
2V3 v21 100.90 18 

multiples of three. Summarizing, the two- 
dimensional unit cells have to contain a 
multiple of three lattice points; the composi- 
tion of a cation layer has a lower limit of 4 
cation + 3 vacancy and an upper limit of 
+ cation + $ vacancy; the choice of the com- 
position of one cation layer determines the 
composition of all other cation layers. 
The results of a study in two-dimensional 
unit cells with a content of 12, 15, and 18 
sites comprise the results from the smaller 
unit cells, so we are merely concerned with 
these larger unit cells. The appropriate 
unit cells are gathered in Table I. Care has 
been taken that no unit cells were included 
that could be derived from another tabulated 
unit cell by means of linear combinations of its 
translation vectors. 

The translation periods of a unit cell are 
expressed in a0 (i.e., the shortest anion-anion 
distance); the angle enclosed by the translation 
periods is given in degrees and the volume ofthe 
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unit cell in the number of lattice points it 
contains. The first unit cell, drawn in Fig. la 
serves as an example. 

Since the two cation layers that enclose an 
anion layer can have several compositions 
the following subdivision is made (0 and M 
indicating a vacancy and a cation, re- 
spectively) : 

A. all cation layers have the same com- 
position : @4 + 30 

B. cations layers with composition 
(2+p)PM+(l -p)/30 and (2-~)/3 
M+ (1 +p)/3 0 alternate (0 <p < 1). 

C. cation layers with composition h4 and 
$t4 + 3 0 alternate. 

c-Stacking 

All possible cation-vacancy types of order 
in a triangular net that belong to group A and 
B can be derived in a straightforward way for 
each two-dimensional unit cell. The super- 
position of a second cation layer has to meet 
the requirement that all anions between the 
two cation layers have the same polyhedron, 
viz., the CO polyhedron. Eight of the eleven 
resulting structures are not triclinic and listed 
in Tables IIA and IIB. Among them struc- 
ture No. 3 has been realized in SC& (8). The 
high temperature modification of CrCl, (9) 
corresponds to structure No. 2, provided 
cations and vacancies are interchanged. 
The cations occupy the 4g position (01/30). 

TABLE IIA 

V’M2X3-S~~~~~~~~~ WITH A C-ANION LATTICE 

No. Space-group Z a b c a /? y 

1 c 2/c 8 V3 3 Vll 90 100.02 90 
2 C 2/m 4 v3 3 v3 90 109.47 90 
3 F ddd 16 2V2 2 6 90 90 90 
4 C ccm 16 2V2 2 6 90 90 90 
5 P 2/c 12 v3 9 v3 90 109.47 90 
6 P 2/m 12 v3 9 v3 90 109.47 90 
7 P 2/m 12 v3 9 v3 90 109.47 90 
8 C 2/m 12 v3 9 v3 90 109.47 90 

In group C one pattern is allowed in the 
cation layer with composition +M + 30, viz., 
the honeycomb pattern (Fig. lb). The number 
of the resulting structures, however, is not 
limited since the layers can be stacked to- 
gether in more than one way without violating 

TABLE IIB 

POSITIONAL PARAMETERS OF THE ViM2X3-S~~~~~~~~ 
WITH A C-ANION LATTICE 

No. M x y z X x Y z 

&a a 
4e 0 2 
8f t r’i- 
2a 0 0 
2d 0 ) 
4h 0 i) 

16g % % 
16g 6 P 

4co 0 
4d 0 -f 
8j 0 4 

8k t 
8k + : 
2e 0 & 
2e 0 42 
2e 0 5; 
2e 0 A 
2e 0 g 
2e 0 % 
2e 0 +i 
2f 4 .I. ii 
2f f 5 
2f 3 -P 
2f 4 % 
2f + % 
lb 0 f 
lc 0 0 
Id + 0 

lh + t 
2i 0 & 
2i 0 A 
2i 0 & 
2j !i 3 
2k 0 + 
2k 0 4 
2k 0 + 
2k 0 $ 
21 3- is 
21 + 6 

4g % h 0 
:; t G$ 8 

4g t s 0 
4g a 42 0 
4g a A 0 
4g f 5% 0 
4g t 2% 0 
4g a f+ 0 
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TABLE IIB--continued 

No. M x y z X x y z 

7 lb 0 + 
lc 0 0 
Id 3 0 
lh 4 ?i 
2i 0 2s 
Y 3 3 
2j 4 $ 
2k 0 3 
21 + A 

8 2b 0 + 
2co 0 
4g 0 % 
4 0 A 
43 0 Gii 
4h 0 3 

4h 0 s 

0 X Identical to No. 6 
+ MXYZ 

___ 2i 0 A 0 
0 2i 0 & 0 
0 3 3 f 0 

!i ; 0 
t A3 

+ 

P 
4i t 0 t 
8j a t % 

0 8j a $ % 
0 8j a 3 a 
0 8j + $ $ 

t 

the restrictions. In a cubic close-packed lattice 
the location of the triangular nets is not uni- 
quely defined ; perpendicular to each body- 
diagonal of a face-centered cube a series of 
triangular nets can be found. If one of these 
series of cation layers belongs to group C, 
having a honeycomb pattern in the layers of 
composition +M+ 30, the other series of 
cation layers can belong to group A or 
group B, but never to group C. The 
proof is very simple: a second series of 
cation layers intersects the first series; the 
layers of composition M and +M + 30 
contribute equally to each cation layer in the 
second series; therefore, each new cation 
layer is at least for one half-filled with cations. 
Thus a study of group C is superfluous: its 
structures are either derived in groups A and 
B or discarded when they overstep the volume 
limit. 

h-Stacking 

In group C only the honeycomb pattern is 
allowed in the cation layer with composition 
$M + $0. The number of resulting structures, 
however, is not limited. Being interested in 
ABX, compounds we did not set bounds to 
the number of possibilities at this stage. 

In group A the only possible pattern is the 
honeycomb pattern of +M + 30. As to the 

number of resulting structures the same 
arguments count as for group C. The anion 
polyhedra in groups A and C are HP and HM, 
respectively. The structure of A1203, Cr,O,, 
etc. (IO), belongs to group A, whereas both 
Cr& (II) structures belong to group C. 
The low temperature modification of CrCl, 
(9) is obtained when cations and vacancies in 
the six-layer structure of Cr2S, are inter- 
changed. 

In group B the anion polyhedra HP and HA4 
occur simultaneously. On the grounds of 
our restrictive application of the rule of parsi- 
mony this group has to be excluded. 

As regards the c-h stackings of anion layers 
no structures exist fulfilling the condition that 
all anions are to have the same polyhedron 
shape. 

Derivation of “‘A”‘BX, Structures 

In the case that A and B are cations with a 
different charge, anion surroundings like 
3A + B violate both Pauling’s second and 
fifth rules. If A and B have an identical charge 
only the rule of parsimony (or better our 
restrictive application of this rule) opposes 

0 A-ion (lowest valancyl 

0 B-ion (highest valcncyl HPP 

FIG. 3. Space-filling polyhedra forYrAV’BXJ. 
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TABLE IIIA 

No. polyhedron Space-group Z a b c 

1 coo 
2 HMO 
3 HP0 
4 HMP 
5 HMP 
6 HMP 
7 HMP 
8 HPM 
9 HPM 

10 HPM 
11 HPP 
12 HPP 

F dd2 
P 31m 
P6322 
P 312 
P 31c 
PJlc 
R3 
P 312 
P31c 
R3 
P 312 
R 3c 

16 2V2 2 6 
2 v3 V3 $V6 
2 v3 V3 5V6 
2 v3 V3 9’6 
4 v3 V3 9’6 
4 v3 V3 $V6 
6 v3 V3 2V6 
2 v3 V3 fV6 
4 v3 V3 96 
6 v3 V3 2V6 
2 v3 V3 9’6 
6 v3 V3 2V6 

TABLE IIIB 

POSITIONAL PARAMETERS OF THE “‘AV1BX3-S.rrt~~~~~~~ 

No. A x y I B x y z x x y ,z 

- 

1 8a 0 0 3 8a 0 0 i+ 
8a 0 0 & 8a 0 0 ++ 

2 la 0 0 0 2d 3 3 f 
lb 0 0 3 

3 2b 0 0 & 2c 3 5 t 
4 lb 0 0 3 la 0 0 0 

If $3 4 Id 3 3 3 
5 2a 0 0 + 2b 0 0 0 

2d 3 3 + 2.c + 3 t 
6 4f 3 3 0 2b 0 0 0 

2c 3 5 t 
7 6c 0 0 & 3a 0 0 0 

3b 0 0 3 
8 la 0 0 0 lb 0 0 ) 

lc 3 3 0 lf 3 3 4 
9 2a 0 0 2 4f 3 3 0 

2d 3 3 t 
10 6c 0 0 & k33 0 
11 la 0 0 0 lc 3 f 0 

Id 3 3 3 If 33 3 
12 6a 0 0 0 6a 0 0 3 

16b 4 * i’T 

16b t t i”T 
16b 0 4 0 
6k 3 0 + 

6g 3 0 0 

61 3 0 t 

12i 3 0 ;Q 

12i + 0 Q 

18f 3 0 i$ 

61 + 0 $ 

12i 3 0 * 

18f f 0 A 
61 3 0 t 

18b 3 0 TG 
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HMO HP0 HMP HPM 

12) (31 IL) (8) 

HMP HMP HPM HPP 

(5) 161 19) (111 

HM P H PM HPP 

I71 1101 112 I 

FIG. 4. [llO] sections of structures 2-12. 

such A-B arrangements. The different anion 
polyhedra, originated by the ordering of 
2A + 2B ions over the occupied octahedral 
sites are shown in Fig. 3. The meaning of the 
third symbol in the code words can be under- 
stood from the discussion about Fig. 2. 
It is noteworthy that A and B merely represent 
different cations without further specification. 
If A and B represent cations with a different 
valency, the interchange of A and B will 
cause a change in the contribution of some of 
the anion polyhedra to the electrostatic 
energy. In behalf of this situation we have 
drawn in Fig. 3 the electrostatically more 
favourable alternative with A representing the 
cation with the lower valency. 

c-Stacking 

Just one structure fulfils the condition 
that all anions are to have an identical 
polyhedron. This structure can be obtained 
from M2X, structure No. 3 and described in the 
“zellengleiche” subgroup F dd2 (Table III, 
No. 1). All anions have the COO polyhedron. 
We did not find structures in which all anions 
have a COP polyhedron; it can even be 
demonstrated that such a structure is im- 
possible. This fact also explains the existence 
of the ReO, structure. 

h-Stacking 
The anion polyhedra HMO and HMP can 

occur in group C while HPM, HPO, and HPP 
belong to group A. Both HMO and HP0 
can be realized in only one structure (Table III, 
Nos. 2 and 3). The remaining anion polyhedra 
can be realized in more than one structure. 
By taking into account the most obvious 
structures another nine structures are obtained 
(Table III, Nos. 4-12). The [llO] sections of 
structures Nos. 2-12 are shown in Fig. 4. 

Discussion of the Results 

The restrictive treatment of Pauling’s 
fifth rule encounters a difficulty in the case of 
the COP polyhedron. We have seen that no 
structure can be devised in which all anions 
have a COP polyhedron. Electrostatically the 
COP polyhedron becomes different from and 
more valuable than the COO polyhedron if 
A and B have different valencies. The greater 
the valency difference, the more favourable 
the COP polyhedron is. Since the HPO, 
HPP, and HMP polyhedra offer reasonable 
alternatives in the case of a great valency 
difference, we do not expect the COP and the 
COO polyhedron to be realized together. 
If we try to realize the COP polyhedron 
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together with one of the hexagonal poly- 
hedra in a mixed c-h lattice, we observe that 
the presence of a COP polyhedron always 
invokes the presence of COO polyhedra. 
These considerations made us omit the 
diverging derivation of structures with more 
than one anion surrounding. 

Several effects influence the realization of a 
certain structure: in addition to the Madelung 
energy and the Born repulsion also the 
polarization energy can be very important. 
Other effects may be the presence of free- 
electron pairs and covalency effects. The mag- 
nitudes of such effects are strictly related to the 
compound under consideration and very 
difficult to compute, so we will confine 
ourselves to some qualitative remarks. The 
Madelung energy of the idealized structures 
decreases for : 

A3+B3+X3 in the series HP0 (HPM, HPP); 
COO; HMO (HMP). 

A2+B4+X3 in the series HPO; HPP; HPM 
(HMP); HMO; COO. 

A1+BS+X3 in the series HPO; HPP; HMP; 
HPM; HMO; COO. 

In structures Nos. 10 and 12 a further 
improvement is achieved by deformations that 
yield a better cation distribution. The cations 
even approach a body centered cubic @cc) 
lattice. The A-B type of order in the HPM 
structure (No. 10) corresponds with the NaTl 
(12) type of order whereas HPP structure 
No. 12 is of the CsCl type. These structures 
can also be deduced by starting with a bee 
lattice of cations and placing the anions in the 
tetrahedral interstices. The 24 tetrahedral 
sites on the SFP of a bee lattice are distributed 
as six clusters of four sites. In order to avoid 
short anion-anion distances the four closest 
neighbours of an occupied site are not allowed 
to be occupied too. Of the 35 different anion 
arrangements, providing each cation with six 
anion neighbours, the one that corresponds 
with structures 10 and 12 is shown in Fig. 5. 
In the case of A3+B3+X3 compounds, the 
Madelung energy favours the distorted struc- 
tures 10 and 12 over HP0 structure No. 3. 
In the case of A2+B4+X3 and A’+B5+X3 
compounds, the Madelung energy favours the 

FIG. 5. Space-filling polyhedron of a bee lattice of 
cations with the anion arrangement, that corresponds 
to structures 10 and 12. 

HPP structure No. 12 increasingly over the 
HPM structure No. 10 but the position of the 
HPP structure with respect to the HP0 
structure No. 3 depends on the extent of the 
deformations. 

Even in the case of oxides and fluorides a 
considerable contribution from the polariza- 
tion energy has to be expected for compounds 
that have cations with different valencies. 
Polarization energy stabilizes for A2+B4+X3 
and A1+B5+X3 compounds the COO and HMO 
polyhedra, followed by the HPM and HMP 
polyhedra at the cost of the HPP and HP0 
polyhedra. 

The influence of the Born repulsion can be 
visualized by considering the ions as hard 
spheres. In order to reach a minimum of 
potential energy further distortions have to 
take account of differences in size between the 
A and B ions in their relation to one another 
and to the anions. The HPMstructure(No. 10) 
can manage such problems simply by changing 
the distances between the anion layers. 

Our conclusions regarding oxides and fluor- 
ides that are devoid of non-ionic effects are: 
the ilmenite structure No. 10 is to be expected 
for A3+B3+X3 and A2+B4+X3 compounds; 
in the case of A1+B5+X3 compourds the HPP 
structure No. 12 is the best provided the 
polarization energy is not dominating and the 
radii of the cations are not too different. If 
the cations have significant different radii 
the HPM structure No. 10 will probably be 
stabilized. A substantial contribution from 
the polarization energy might cause the realiz- 
ation of the HMO structure No. 2 or the COO 
structure No. 1. Especially in the case of large 
and/or highly charged anions one should take 
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account of a considerable contribution from 
the polarization energy. 

Up to now the HPM structure No. 10 has 
been realized in ilmenite, in many other oxides 
(23) and in NaMnCl, and NaCdCl, (3). The 
HPP structure No. 12 has been found in 
LiNbO, and LiTaO, (14). Structure No. 3 
(HPO) has been reported to be the crystal 
structure of LiIO, (15, 16). In this compound 
the iodine ion has a free electron pair, which 
accounts for the difference in structure 
between LiNbO, and LiIO,. Free electron 
pairs often cause a deformed six-coordination 
with three anions at a smaller and three at a 
larger distance. The resulting coordination 
can be described as a tetrahedron, constituted 
by three anions and the electron pair. An 
example is CsSnCl, (17) in which compound 
St?+ has three nearest anion neighbours. 
The desired deformations can easily be 
achieved in the HP0 structure, in the HPP 
structure however they unavoidably invoke a 
bad lithium surrounding. 

LiSbO, (18) is reported to adopt a crystal 
structure in which one anion has a HP0 
polyhedron and two have HMO polyhedra. The 
bad screening of the filled d’O core in SbS+ 
results in a higher effective nuclear charge than 
Nb5+ and Ta5+ have. Therefore, the influence 
of the polarization energy is more important 
in LiSbO, than in LiNbO, or LiTaO,. Re- 
cently Goodenough and Kafalas (19) have 
discussed the observed structure of LiSbO, 
in comparison with the HPP structure and 
ascribed it to the covalent contribution to the 
Sb-0 bonds. However, the occurrence of the 
observed structure is unexpected according 
to Pauling’s fifth rule inasmuch as a structure 
with all anions in a HMO polyhedron is 
available. NaSbO, (20) is reported to adopt 
the ilmenite structure which can be expected 
on the grounds of the polarization energy and 
the large radius difference between the sodium 
and antimony ions. The realization of the 
ilmenite structure instead of a perovskite-like 
structure is caused by the contribution of the 
polarization energy (19). According to Brand- 
wijk and Schippers (2) no favourable structure 
can be derived from any stacking of AX, 
layers when the contribution of the polariza- 
tion energy is important and the A ion is 

smaller than the X ion. The same arguments 
hold for NaBiO, (21). 

In the crystal structure of MO,& (22) the 
anions are located on a close-packed lattice 
with chh stacking of the triangular nets. 
The occurrence of such a structure in which 
three kinds of anion surroundings are present, 
viz., three, four, and five coordinated anions, 
has to be ascribed to metal-metal interactions. 
These interactions explain the short metal- 
metal distances in the zigzag metal chains. 

So far we have dealt with a close-packed 
lattice of anions and placed the cations in the 
octahedral interstices. Considering com- 
pounds with increasing ‘M/rx ratio the close- 
packed anion lattice becomes less and less 
close-packed. Another kind of structure might 
then become more favourable. Such a structure 
can be derived by starting the structure 
derivation with a close-packed lattice of 
cations and placing the anions in the tetra- 
hedral interstices. Of the close-packed lattices 
only the ccp lattice is suitable since in the hcp 
and the mixed c-h lattices short anion-anion 
distances always appear. On the SFP of a 
ccp lattice six of the eight available tetra- 
hedral sites have to be occupied by anions 
to provide each cation with six anion neigh- 
bours. The three possible cation surroundings 
are depicted in Fig. 6. The most isonomous 
one is 6,, followed by the 6, polyhedron. 
Only one structure exists with all cations in a 
6, polyhedron (Table IV). This structure has 
been ascribed to Ag,O, (23), Bi,O, (24, 
AgSbO, (25), and PbReO, (26); for the latter 
two compounds the structure has been 
derived from the pyrochlore (27) structure 
that in its turn can be derived from the 
fluorite (28) structure. The CuzO structure (Cu 
has a 2p coordination instead of 6p) is 
obtained by interchanging anions and 
vacancies. The number of structures with 
all cations in a 6, or a 6, polyhedron is 
not limited by Pauling’s rules. Examples 
of structures with the non-isonomous 6, 
polyhedra are, as we expected, only found for 
anti-compounds: Zn,P, (29) and cr,y ZnCl, 
(30, 31) (in the structures of ZnCl,, 2, instead 
of 6, coordinations occur because the cations 
and vacancies have interchanged relative to 
MJX,). To our knowledge structures with 6, 
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FIG. 6; Space-filling polyhedra of a ccp cation lattice 
with anion arrangements 6,, 6,, and 6,. 

polyhedra have not been reported as yet, but 
in SiS,’ the 2, polyhedron has been realized. 

Dealing with these fluorite-derived struc- 
tures we notice the appearance of a structure 
that combines 6, and 6, polyhedra in the 
ratio 1 x 6, + 3 x 6,; for example in Mn203, 
Y,O,, etc. (31). The sole A,BXs compound, 
reported to have this structure is Cu,TeOs 
(33). The structure does not obey Pauling’s 
fifth rule. Nevertheless, the realization of this 
structure can easily be understood: in the 
structure with all cations in a 6, polyhedron 
the anion distribution cannot be improved 
by moving them towards the vacancies. 
Related to the anion distribution is the sur- 
rounding of the cation: 6, is an octahedron, 
squashed along the threefold axis. An im- 
provement of the anion distribution leads to a 
less squashed octahedron. If one tries to de- 

TABLE IV 

“‘M2X,-S~~~~~~ WITH A C-CATION LA~ICE 

Space-group : Pn3m 
z=2 
a = aoV2 
M:4bOOO 
X: 6d+$t 
Cation polyhedron: 6, 

sign a structure containing 6, and 6, poly- 
hedra in which such improvements of the 
anion distribution are possible and the num- 
ber of 6, polyhedra with respect to the 
number of 6, polyhedra is a maximum, the 
Mn,O, structure is immediately obtained. 

Evaluation 

The procedure devised in order to obtain 
the complete set of structures that meet the 
imposed requirements could successfully be 
applied to the ordering of cations and vac- 
ancies over the octahedral interstices in close- 
packed lattices. The application of the rule of 
parsimony makes a correct structure predic- 
tion possible in the majority of the investigated 
cases. The Mn,O, structure forms an exception 
but can be understood on the grounds of a 
better anion distribution. We are not able to 
explain the second exception, viz., the LiSbO, 
structure. 
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